A Hybrid Evolutionary Imperialist Competitive Algorithm (HEICA)
نویسندگان
چکیده
This paper proposes a new approach by combining the Evolutionary Algorithm and Imperialist Competitive Algorithm. This approach tries to capture several people involved in community development characteristic. People live in different type of communities: Monarchy, Republic and Autocracy. People dominion is different in each community. Research work has been undertaken to deal with curse of dimensionality and to improve the convergence speed and accuracy of the basic ICA and EA algorithms. Common benchmark functions and large scale global optimization have been used to compare HEICA with ICA, EA, PSO, ABC, SDENS and jDElsgo. HEICA indeed has established superiority over the basic algorithms with respect to set of functions considered and it can be employed to solve other global optimization problems, easily. The results show the efficiency and capabilities of the new hybrid algorithm in finding the optimum. Amazingly, its performance is about 85% better than others. The performance achieved is quite satisfactory and promising.
منابع مشابه
Multiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems
Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...
متن کاملA Hierarchy Topology Design Using a Hybrid Evolutionary Algorithm in Wireless Sensor Networks
Wireless sensor network a powerful network contains many wireless sensors with limited power resource, data processing, and transmission abilities. Wireless sensor capabilities including computational capacity, radio power, and memory capabilities are much limited. Moreover, to design a hierarchy topology, in addition to energy optimization, find an optimum clusters number and best location of ...
متن کاملPrediction of Surface Roughness by Hybrid Artificial Neural Network and Evolutionary Algorithms in End Milling
Machining processes such as end milling are the main steps of production which have major effect on the quality and cost of products. Surface roughness is one of the considerable factors that production managers tend to implement in their decisions. In this study, an artificial neural network is proposed to minimize the surface roughness by tuning the conditions of machining process such as cut...
متن کاملOptimization of Fabric Layout by Using Imperialist Competitive Algorithm
In textile industry, marker planning is one of the main operations in the cutting fabric stage. Marker packing is usually used to maximize cloth exploitation and minimize its waste. In this research, a method is used based on new found meta-heuristic imperialist competitive algorithm (ICA) and Bottom-Left-Fill Algorithm (BLF) to achieve optimal marker packing. Function of the proposed method wa...
متن کاملDesign of IIR Digital Filter using Modified Chaotic Orthogonal Imperialist Competitive Algorithm (RESEARCH NOTE)
There are two types of digital filters including Infinite Impulse Response (IIR) and Finite Impulse Response (FIR). IIR filters attract more attention as they can decrease the filter order significantly compared to FIR filters. Owing to multi-modal error surface, simple powerful optimization techniques should be utilized in designing IIR digital filters to avoid local minimum. Imperialist compe...
متن کامل